
The	Draggable Cat

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	3.3

©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License. 1



Introduction

In	this	lesson,	you	will	learn	how	to	make	a	Universe	
program	that	responds	to	mouse	events,	but	more	
importantly,	you	will	learn	how	to	systematically	add	
new	features	to	a	working	program.	

This	is	important,	because	we	always	build	systems	by	
starting	with	a	small	but	working	program,	and	then	
adding	refinements	and	features.

2



Learning	Objectives

• At	the	end	of	this	lesson	you	should	be	able	
to:
– design	a	Universe	program	that	responds	to	
mouse	events

– list	the	steps	in	adding	functionality	to	a	working	
program

3



draggable-cat:	Requirements

• Like	falling	cat,	but	user	can	drag	the	cat	with	the	
mouse.

• button-down	to	select,	drag	to	move,	button-up	
to	release.

• A	selected	cat	doesn't	fall.		When	unselected,	cat	
resumes	its	previous	pausedness
– if	it	was	falling,	it	will	continue	to	fall	when	released
– if	it	was	paused,	it	will	remain	paused	when	released

4



Video:	draggable-cat	demo

5

https://www.youtube.com/watch?v=5MG1mpsrHsc



in-cat?	relies	on	Bounding	Box

w = (image-width CAT-IMAGE)

h =
(image-height CAT-IMAGE)

(x0,y0)

(x,y)	 is	inside	the	rectangle	iff
(x0-w/2)	<=	x	<=	(x0	+	w/2)

and	(y0-h/2)		<=	y	<=	(y0+h/2)

y	=	y0-h/2

y	=	y0+h/2

x	=	x0-w/2 x	=	x0+w/2

6



Information	Analysis

• What	are	the	possible	behaviors	of	the	cat?
– as	it	falls?
– as	it	is	dragged?

• If	we	can	answer	these	questions,	we	can	
determine	what	information	needs	to	be	
represented	for	the	cat.

• Let's	write	down	the	answers	in	graphical	
form.

7



Life	Cycle	of	a	falling	cat

any	other	key	
event

unpaused paused

space	bar

space	bar

initially,	cat	is	unpaused

any	other	key	event

As	the	cat	falls,	it	is	either	paused	or	
unpaused.	When	the	user	hits	the	
space	bar,	an	unpaused cat	becomes	
paused,	and	a	paused	cat	becomes	
unpaused.	 	Any	other	key	event	is	
ignored.	 	

This	is,	of	course,	the	same	analysis	
that	we	did	for	falling-cat,	but	 it's	
helpful	 to	see	it	in	graphical	form.

8



Life	Cycle	of	a	dragged	cat

drag:	cat	follows	
mouse

unselected selected

button-down	 in	image

button-up

initially,	cat	is	unselected

We	can	do	a	similar	analysis	for	the	cat	as	it	is	
dragged.	As	the	cat	is	dragged,	 it	is	either	

selected	or	unselected.		Here	is	a	state	diagram	
that	shows	what	things	cause	the	cat	to	change	

from	selected	to	unselected	or	vice	versa.
9



Life	cycle	of	a	dragged,	falling	cat

(unselected,	
unpaused)

(selected,	paused)

(unselected,	
paused)

(selected,	
unpaused)

initial	state

drag:	cat	
follows	mouse	

button	down
button	up

space	bar

space	bar

button	up button	down

space	bar

space	bar

drag:	cat	
follows	mouse	

tick:	cat	falls
We	can	combine	 these	to	get	a	
complete	picture	of	how	the	cat	

responds	 to	various	stimuli

10



Information	Analysis:	the	Cat

• As	before,	our	world	consists	of	a	single	cat.	
• Since	the	cat	can	be	dragged	in	the	x
direction,	we	need	to	keep	track	of	both	the	x
position	and	y position	of	the	cat.		

• We	also	keep	track	of	two	Boolean	values,	
telling	us	whether	the	cat	is	paused	and	
whether	the	cat	is	selected.	

• Here	is	the	data	definition,	including	the	
template.

11



Data	Design	for	Cat
(define-struct world (x-pos y-pos paused? selected?))
;; A World is a (make-world Integer Integer Boolean Boolean)
;; Interpretation: 
;; x-pos, y-pos give the position of the cat. 
;; paused? describes whether or not the cat is paused.
;; selected? describes whether or not the cat is selected.

;; template:
;; world-fn : World -> ??
;(define (world-fn w)
; (... (world-x-pos w) (world-y-pos w) 
;      (world-paused? w) (world-selected? w)))

12



Life	Cycle	of	Mouse	Movements
• What	are	the	possible	movements	of	a	mouse?
• Initially,	the	mouse	enters	the	canvas	(an	"enter" event)	and	the	

button	is	up.		
• While	the	button	is	up,	the	user	can	only	do	3	things:

– move	the	mouse	(a	"move" event)	or	
– move	the	mouse	off	the	canvas	(a	"leave" event)	or
– depress	the	mouse	button	(a	"button-down" event).

• While	the	button	is	down,	again	the	user	can	do	exactly	3	things:
– move	the	mouse	(this	is	called	a	"drag" event)
– move	the	mouse	off	the	canvas	(a	"leave" event)	or
– release	the	mouse	button	(a	"button-up" event)

• When	the	mouse	is	off	the	canvas,	no	events	are	possible.
• Similarly,	we	can	draw	a	state-transition	diagram	for	the	

movements	of	the	mouse.		

13



mouse	enters	canvas

mouse	 leaves	canvas

mouse	 is	
off-

canvas

button	 is	
up

button	 is	
down

button-down

drag	mouse
button-up

move	mouse

mouse	enters	canvasmouse	enters	canvas

Life	Cycle	of	Mouse	Movements

Mouse	movements	have	their	own	life	cycle.	We've	
drawn	the	off-canvas	events	in	a	lighter	color	
because	most	of	the	time	we	don't	need	to	worry	
about	them.

14



Information	Analysis:	Mouse	Events

• Looking	at	the	life	cycle	of	a	dragged	cat,	we	
see	that	only	three	mouse	events	are	relevant:	
– "button-down" ,	
– "drag",	and	
– "button-up".

• Other	mouse	events,	like	"enter",	"leave",	or	
"move" are	ignored.		

• We	can	write	a	template	for	doing	cases	on	
MouseEvents for	this	application:

15



Case	analysis	for	mouse	events
; mev-fn : MouseEvent -> ??
; STRATEGY: Cases on MouseEvent mev
;(define (mev-fn mev)
;  (cond
;    [(mouse=? mev "button-down") ...]
;    [(mouse=? mev "drag") ...]
;    [(mouse=? mev "button-up") ...]
;    [else ...]))

We	won’t	require	you	to	write	down	this	template,	but	
you	may	find	that	writing	it	down	is	helpful,	since	you	
are	likely	to	use	the	same	set	of	cases	several	times	in	
your	program.

16



Getting	your	old	program	to	work	with	
the	new	data	definitions

• Don't	try	adding	the	new	features	yet!
• First,	get	all	your	old	functions	working	with	
the	new	data	definitions.

• Make	sure	your	old	tests	work
– Don't	change	your	tests!
– If	you	used	mostly	symbolic	names	for	the	test	
inputs	and	outputs,	so	you	should	be	able	to	just	
change	those	definitions.

– The	tests	themselves	should	work	unchanged.

17



Testing	your	old	functions
(define unpaused-world-at-20 

(make-world CAT-X-COORD 20 false false))  
(define paused-world-at-20   

(make-world CAT-X-COORD 20 true false))
(define unpaused-world-at-28 

(make-world CAT-X-COORD 28 false false))  
(define paused-world-at-28   

(make-world CAT-X-COORD 28 true false))
...
(check-equal?

(world-after-key-event paused-world-at-20 pause-key-event)
unpaused-world-at-20
"after pause key, a paused world should become unpaused")

same	tests

adjusted	values

18



Everything	OK?

• Good.		Now	we	are	ready	to	move	on	to	the	
new	features.

19



Responding	to	Mouse	Events
(big-bang ...
(on-mouse world-after-mouse-event))

world-after-mouse-event : 
World Integer Integer MouseEvent -> World

Look	in	the	Help	Desk	for	details	
about	on-mouse	

20



world-after-mouse-event
;; world-after-mouse-event : 
;;    World Integer Integer FallingCatMouseEvent
;;    -> World
;; produces the world that should follow the given mouse event
;; examples:  See slide on life cycle of dragged cat
;; strategy: cases on mouse events
(define (world-after-mouse-event w mx my mev)

(cond
[(mouse=? mev "button-down") 
(world-after-button-down w mx my)]

[(mouse=? mev "drag") 
(world-after-drag w mx my)]

[(mouse=? mev "button-up")
(world-after-button-up w mx my)]

[else w]))

21



How	to	test	this	function?
• 3	mouse	events	(+	a	test	for	the	else	clause)
• cat	selected	or	unselected
– mouse	works	the	same	way	whether	the	cat	is	paused	
or	not.		

• event	inside	cat	or	not.
• 3	x	2	x	2	=	12	tests
• plus	test	for	else	clause
• plus:	cat	remains	paused	or	unpaused across	
selection.

• Demo:	draggable-cat.rkt

22



Draggable-cat	readthrough

Remember,	 in	the	time	since	this	video	was	recorded,	we’ve	
changed	many	of	the	details.		Look	carefully	at	the	file	in	the	
Examples	folder.		That’s	the	one	that	your	code	should	 resemble. 23

https://www.youtube.com/watch?v=b-0vHjYZzZs



The	Iterative	Design	Recipe

• We	started	with	a	simple	system,	and	we	
added	some	new	features	to	it.

• In	doing	this,	we	were	following	a	recipe.
• We	call	this	the	“iterative	design	recipe”	
because	it	tells	us	how	to	build	a	system	by	
iteratively	adding	more	complex	features.

“iteratively”	means	“repeatedly”	or	“in	stages”

24



The	Iterative	Design	Recipe

Adding	a	New	Feature	to	an	Existing	Program
1.	Perform information	analysis	for	new	feature
2.	Modify	data	definitions as	needed
3.	Update	existing	functions	to	work	with new	
data	definitions
4.	Write	wishlist of	functions	for	new	feature
5.	Design	new	functions	following	the	Design
Recipe
6.	Repeat	for	the	next	new	feature

25



Summary

• In	this	lesson,	you	had	the	opportunity	to
– create	a	Universe	program	that	responds	to	
mouse	events

– use	the	recipe	for	adding	functionality	to	a	
working	program	(the	Iterative	Design	Recipe)

26



Next	Steps

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

27


